SLAM & Static Driver Verifier:

Technology Transfer of Formal Methods in
Microsoft

Thomas Ball
Microsoft Research

Joint work with Sriram Rajamani, Byron Cook and
Viadimir Levin

Overview

e |Interface contracts

 SLAM analysis engine

— technical overview

« Static Driver Verifier
— transfer of technology to Windows

Platform Interfaces
Everywhere!

Implementation

But no
contracts!

Interface Contracts

NETWORK

] e
HO LW

DDDDDDDDD

PROGRAMMING

DlrectX

rver _
Development Kit

e official
" lide to the

crosoft Windows

iver Model

er Oney

Rules in documentation

— Incomplete, unenforced, wordy
— Order of operations & data access
— Resource management

*Disobeying rules causes bad

behavior

— System crash or deadlock
— Unexpected exceptions

— Failed runtime checks

Informal Contract: Sockets

///////\\\\\/’//////A\\\\\\\"’////«\\\\\/’/////N\\\\\V////A\\

the "communication domain" in which communication is to take
place; see protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams,

similar to pipes. A stream socket must be in a connected
state before any data may be sent or received on it. A con-
nection to another socket is created with a connect(2) call.
Oonce connected, data may be transferred using read(2v) and
write(2v) calls or some variant of the send(2) and recv(2)

calls. Wwhen a session has been completed a close(2v), may

be performed. out-of-band data may also be transmitted as

described in send(2) and received as described in recv(2).

UNI

NETWORK
PROGRAMMIN

Networ

The communications protocols used to implement a SOCK_STREAM

7 insure that data is not lost or duplicated. If a piece of
e -

i 1%

[WLRICHARD STEVENS |

Formalizing Contracts

* Pre/post conditions
— Hoare logic
— Eiffel: “design by contract”, integrated into
language
— JML.: pre/post language
* Monitors

— security automata
— SLIC - SLAM’s API rule language

* Models
— ASML.: separate modeling language

Why are Contracts Useful?

Precision in specification & design
Separation of concerns
Documentation

Checking/Testing

— dynamic (run-time)
— static (compile-time)
Responsibility, enforceabillity, liability, ...

Contract Checking

* Precisely specify contracts
— partial specifications for interfaces

» Client code is automatically checked
against contracts

 Different from proving program correctness
— contracts are not complete

Does a given contract hold?

» Checking this is computationally
impossible!

* Equivalent to solving Turing’s halting
problem (undecidable)

* Even restricted computable versions of the
problem (finite state programs) are
prohibitively expensive

Why bother?

Just because a problem is undecidable, it
doesn’t go away!

Automatic contract checking:
A Study of Tradeoffs

e Soundness vs. completeness
— false positives
— false negatives

* Annotation burden on the programmer

« Complexity of the analysis
— local vs. global
— precision vs. efficiency
— space vs. time

Broad classification

* Underapproximations

— testing

« after passing testing, a program may still violate a
given property

* Overapproximations
— type checking

« even if a program satisfies a property, the type
checker for the property could still reject it

Contract Checking

« Confluence of techniques from different fields:
— model checking
— automatic theorem proving
— program analysis

 Significant emphasis on practicality

* New projects in industry and academia
— SLAM, Feaver, BLAST, Magic, Metal, Mops, ...

Overview

e |nterface contracts

 SLAM analysis engine

— technical overview

« Static Driver Verifier
— transfer of technology to Windows

eSS

=
P{Oggmmmg

Read for
< understanding

Precise
API Usage Rules

Drive testing
tools

New API rules

Development

Software Model Testing
Checking
100% path 1=node. i 1 ++ S iagg enal) oueH
coverage

Source Code

Traditional approach

model
checker

1

FSM Finite state machines

Source code Sequential C program

Automagc aRpetraction

Pinste dtate madeines
Boolean
program

C data structures, pointers,
procedure calls, parameter passing,
scoping,control flow

Sequential C program

Source code

State Machine
for Locking

Locking Rule in
SLIC

state {
enum {Locked,Unlocked}
s = Unlocked;

KeAcquireSpinLock.entry {
1f (s==Locked) abort;

else s = Locked;

KeReleaseSpinLock.entry {
1f (s==Unlocked) abort;

else s = Unlocked;

Example

do {

Does this code
obey the
locking rule?

7

KeAcquireSpinLock () ;

nPacketsOld = nPackets;

1f (request) {
request = request->Next;
KeReleaseSpinLock () ;
nPackets++;

}

} while (nPackets != nPackets0l1ld);

KeReleaseSpinLock() ;

Example

Model checking
boolean program

(bebop)
ap do | &
KeAcquireSpinLock () ;
(LD LE (%)
KeReleaseSpinLock() ;

}

o } while (*);
0 @ KeReleaseSpinLock() ;

Example
Is error path feasible

b : (nPacketsOld == nPackﬂ in C program?
(newton)

D do |
KeAcquireSpinLock () ;

7

nPacketsOld = nPackets;

o 1f (request) {
o request = request->Next;
KeReleaseSpinLock () ;
0 nPackets++;

}
LD (U) !} while (nPackets != nPacketsOld);

o 0 KeReleaseSpinLock () ;

Example
Add new predicate

b : (nPacketsOld == nPackﬂ to boolean program

(c2bp)
0 do { b
KeAcquireSpinLock () ;
(LD
nPacketsOld = nPackets; b = true;
CL) if (request) {
o request = request->Next;
KeReleaseSpinLock () ;
0 nPackets++; b = b ? false : *;
}
o 0 } while (nPackets !'= nPacketsOld) ; 'b

0 0 KeReleaseSpinLock () ;

Example

Model checking

b : (nPacketsOld == nPackﬂ boolerZ]:nper?)gram
(bebop)

do {
KeAcquireSpinLock () ;

ﬁ7

b = true;

KeReleaseSpinLock () ;
b =Db ? false : *;

Example

Model checking

b : (nPacketsOld == nPackﬂ boolerZ]:nper?)gram
(bebop)

do {
KeAcquireSpinLock () ;

ﬁ7

b = true;

1E (%) {

KeReleaseSpinLock () ;
b =Db ? false : *;
}
} while ('b);

KeReleaseSpinLock() ;

Inferred Invariant

¢ The lock is \held at the end
O‘F +Hre loo@ \'F ound 0N l>/ \I‘F
APackets == nPacketrs Old Y

Counterexample-driven ’
refinement @DQ

boolean Bebop
#include program reachability
<ntddk.h> check
C2BP L
@—P predicate R
abstraction
refinement Newton
predicates feasibility
check

s ve\may 'A2 Ball /I Ra'sanaanry 60 Clevite etal 'me

Observations about SLAM

« Automatic discovery of invariants
— driven by property and false negatives
— predicates are not invariants, but observations
— abstraction + model checking computes invariants

* A new form of program slicing
— code and data not relevant to property omitted
— non-determinism allows slices to have more behaviors

Overview

e |nterface contracts

 SLAM analysis engine

— technical overview

« Static Driver Verifier
— transfer of technology to Windows

SLAM/SDV History

2000-2001 « September 3, 2002
— foundations, algorithms, — made initial release of SDV to
prototyping Windows (friends and family)
— papers in CAV, PLDI, POPL,
SPIN, TACAS « April 1,2003
— made wide release of SDV to
March 2002 Windows (any internal driver
— Bill Gates review developer)
May 2002 September, 2003
— Windows committed to hire — team of six in Windows
two Ph.D.s in model checking working on SDV
to support Static Driver Verifier — researchers moving into
“consultant” role
July 2002

— running SLAM on 100+

November, 2003
drivers, 20+ properties

— demonstration at Driver
Developer Conference

December, 2004

readv to <hin!!

Successes

« Static Driver Verifier is now deployed within Microsoft:

— “This bug would be a really hard bug to find other than with a
tool like SDV. There are just too many details to keep track of
to have a good chance of finding it.”

— “These are all real, difficult to discover bugs. Good work!”

— “This bug would have been very difficult to find by inspection
and it was one of those bugs that would be near-impossible to
reproduce...”

— “Fixing this bug will definitely stop some unexplainable and
hard to debug random system crashes in the future.”

Successes

« Static analysis tools (such as SDV) are now a
part of the standard suite of tools used within
Microsoft

* These tools are becoming available to
Microsoft's customers

* These tools are encouraging specification and
more modular design

Some Lessons Learned

People power

Focus on problems not solutions
Exploit synergies and shoulders

Plan carefully

Cultivate champions

Embedded verification experts

“Push button” technology is not simple

People Power

Software Productivity Tools group members

— Sriram Rajamani, Manuvir Das, Rob DeLine, Jim Larus, Manuel
Fahndrich, Rustan Leino, Jakob Rehof, Shaz Qadeer

SLAM summer interns
— Sagar Chaki, Todd Millstein, Rupak Majumdar (2000)
— Satyaki Das, Wes Weimer, Robby (2001)
— Jakob Lichtenberg, Mayur Naik (2002)
— Jakob Lichtenberg, Shuvendu Lahiri, Georg Weissenbacher, Fei Xie (2003)

SLAM Visitors

— Giorgio Delzanno, Andreas Podelski, Stefan Schwoon

Static Driver Verifier; Windows Partners

— Byron Cook, John Henry, Vladimir Levin, Con McGarvey, Bohus Ondrusek,
Abdullah Ustuner

— Neill Clift, Nar Ganapathy, Adrian Oney, Johan Marien, Bob Rinne, Rob Short,
Peter Wieland

Focus on Problems not Solutions

* Device driver problem
— important to Microsoft
— testing insufficient to ensure quality
— many complexities but code of reasonable size

* Problem space guides search for solution
— control-dominated properties = boolean programs
— no annotations = counterexample-driven refinement

Exploit Synergies and Shoulders

« Diverse backgrounds of investigators

« SLAM built on strong foundations
— program analysis
— model checking
— automated deduction

* Infrastructure
— MS compiler front-end and alias analysis
— CUDD BDD library
— Simplify theorem prover
— OCaml programming language

Plan Carefully

Creativity = 10% inspiration + 90% perspiration

Initial technical report
— laid out plan, left open problems
— recruiting/preparing interns

Demo milestones

Software process
— open software architecture

— code ownership, code reviews, code refactoring and
cleanup

— regression test suite

Cultivate Champions

* Device driver experts
— Adrian Oney, Peter Wieland
— explained subtleties of kernel
— reviewed rules and error traces

 Management champions
— Bob Rinne, Base OS
— Amitabh Srivastava, PPRC

Embedded Verification Experts

Windows committed to hire two Ph.D.s with
verification expertise

— Byron Cook and Vladimir Levin
— offices in both development and research

Virtual team worked closely together for 1.5
years

Product team now has 6 people full-time

High bandwidth channel between groups

Making It “Push Button”

« Without rules, SLAM does nothing

— developing rules is an error-prone process, especially
for legacy APls

* Environment model costly to build as well
— for drivers, environment is the Windows kernel

* Rule designer needs to know a lot about SLAM
to get efficiency

Conclusions

* The technology now exists for enforcing simple
API contracts

* Rollout/adoption
— first as out-of-band tools (i.e., SLAM/SDV)
— next as in-band tools (part of language/compiler)

« Many variables in equation of technology transfer
— keep your eyes wide open!

Further Reading

See papers, slides from:

http://research.microsoft.com/slam

http://research.microsoft.com/~tball

