
SLAM & Static Driver Verifier:
Technology Transfer of Formal Methods in

Microsoft

Thomas Ball
Microsoft Research

Joint work with Sriram Rajamani, Byron Cook and
Vladimir Levin

Overview
• Interface contracts

• SLAM analysis engine
– technical overview

• Static Driver Verifier
– transfer of technology to Windows

Client

Implementation

API
But no

contracts!

Platform Interfaces
Everywhere!

Interface Contracts

•Rules in documentation
– Incomplete, unenforced, wordy
– Order of operations & data access
– Resource management

•Disobeying rules causes bad
behavior
– System crash or deadlock
– Unexpected exceptions
– Failed runtime checks

Informal Contract: Sockets

the "communication domain" in which communication is to take
place; see protocols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams,
similar to pipes. A stream socket must be in a connected
state before any data may be sent or received on it. A con-
nection to another socket is created with a connect(2) call.
Once connected, data may be transferred using read(2V) and
write(2V) calls or some variant of the send(2) and recv(2)
calls. When a session has been completed a close(2V), may
be performed. Out-of-band data may also be transmitted as
described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM
insure that data is not lost or duplicated. If a piece of

Formalizing Contracts

• Pre/post conditions
– Hoare logic
– Eiffel: “design by contract”, integrated into

language
– JML: pre/post language

• Monitors
– security automata
– SLIC - SLAM’s API rule language

• Models
– ASML: separate modeling language

Why are Contracts Useful?

• Precision in specification & design
• Separation of concerns
• Documentation
• Checking/Testing

– dynamic (run-time)
– static (compile-time)

• Responsibility, enforceability, liability, …

Contract Checking
• Precisely specify contracts

– partial specifications for interfaces

• Client code is automatically checked
against contracts

• Different from proving program correctness
– contracts are not complete

Does a given contract hold?
• Checking this is computationally

impossible!

• Equivalent to solving Turing’s halting
problem (undecidable)

• Even restricted computable versions of the
problem (finite state programs) are
prohibitively expensive

Why bother?

Just because a problem is undecidable, it
doesn’t go away!

Automatic contract checking:
A Study of Tradeoffs

• Soundness vs. completeness
– false positives
– false negatives

• Annotation burden on the programmer

• Complexity of the analysis
– local vs. global
– precision vs. efficiency
– space vs. time

Broad classification

• Underapproximations
– testing

• after passing testing, a program may still violate a
given property

• Overapproximations
– type checking

• even if a program satisfies a property, the type
checker for the property could still reject it

Contract Checking
• Confluence of techniques from different fields:

– model checking
– automatic theorem proving
– program analysis

• Significant emphasis on practicality

• New projects in industry and academia
– SLAM, Feaver, BLAST, Magic, Metal, Mops, …

Overview
• Interface contracts

• SLAM analysis engine
– technical overview

• Static Driver Verifier
– transfer of technology to Windows

Source Code

Testing
Development

Precise
API Usage Rules

(SLIC)

Software Model
Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

Static Driver VerifierStatic Driver Verifier

Sequential C program

Finite state machines

Source code

FSM

model
checker

Traditional approach

Sequential C program

Finite state machines

Source code

FSM

abstraction

model
checker

C data structures, pointers,
procedure calls, parameter passing,
scoping,control flow

Automatic abstraction

Boolean
program

SLAM

Push down model

State Machine
for Locking

Unlocked Locked

Error

Rel Acq

Acq

Rel

state {
enum {Locked,Unlocked}

s = Unlocked;
}

KeAcquireSpinLock.entry {
if (s==Locked) abort;
else s = Locked;

}

KeReleaseSpinLock.entry {
if (s==Unlocked) abort;
else s = Unlocked;

}

Locking Rule in
SLIC

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Does this code

obey the
locking rule?

do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Example
Model checking
boolean program

(bebop)

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example
Is error path feasible

in C program?
(newton)

U

L

L

L

L

U

L

U

U

U

E

b : (nPacketsOld == nPackets)

do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b = true;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++; b = b ? false : *;

}
} while (nPackets != nPacketsOld); !b

KeReleaseSpinLock();

Example
Add new predicate
to boolean program

(c2bp)
b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Example
Model checking

refined
boolean program

(bebop)

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {
KeAcquireSpinLock();

b = true;

if(*){

KeReleaseSpinLock();
b = b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

boolean program
(bebop)

Inferred Invariant

Counterexample-driven
refinement

#include
<ntddk.h>

C2BP
predicate

abstraction

boolean
program

Newton
feasibility

check

Bebop
reachability

check

Harness
SLIC
Rule

+

refinement
predicates

error
path

Observations about SLAM
• Automatic discovery of invariants

– driven by property and false negatives
– predicates are not invariants, but observations
– abstraction + model checking computes invariants

• A new form of program slicing
– code and data not relevant to property omitted
– non-determinism allows slices to have more behaviors

Overview
• Interface contracts

• SLAM analysis engine
– technical overview

• Static Driver Verifier
– transfer of technology to Windows

SLAM/SDV History
• 2000-2001

– foundations, algorithms,
prototyping

– papers in CAV, PLDI, POPL,
SPIN, TACAS

• March 2002
– Bill Gates review

• May 2002
– Windows committed to hire

two Ph.D.s in model checking
to support Static Driver Verifier

• July 2002
– running SLAM on 100+

drivers, 20+ properties

• September 3, 2002
– made initial release of SDV to

Windows (friends and family)

• April 1, 2003
– made wide release of SDV to

Windows (any internal driver
developer)

• September, 2003
– team of six in Windows

working on SDV
– researchers moving into

“consultant” role

• November, 2003
– demonstration at Driver

Developer Conference
December, 2004
ready to ship!!

Successes
• Static Driver Verifier is now deployed within Microsoft:

– “This bug would be a really hard bug to find other than with a
tool like SDV. There are just too many details to keep track of
to have a good chance of finding it.”

– “These are all real, difficult to discover bugs. Good work!”

– “This bug would have been very difficult to find by inspection
and it was one of those bugs that would be near-impossible to
reproduce…”

– “Fixing this bug will definitely stop some unexplainable and
hard to debug random system crashes in the future.”

Successes
• Static analysis tools (such as SDV) are now a

part of the standard suite of tools used within
Microsoft

• These tools are becoming available to
Microsoft’s customers

• These tools are encouraging specification and
more modular design

Some Lessons Learned
• People power
• Focus on problems not solutions
• Exploit synergies and shoulders
• Plan carefully
• Cultivate champions
• Embedded verification experts
• “Push button” technology is not simple

People Power
Software Productivity Tools group members

– Sriram Rajamani, Manuvir Das, Rob DeLine, Jim Larus, Manuel
Fahndrich, Rustan Leino, Jakob Rehof, Shaz Qadeer

SLAM summer interns
– Sagar Chaki, Todd Millstein, Rupak Majumdar (2000)
– Satyaki Das, Wes Weimer, Robby (2001)
– Jakob Lichtenberg, Mayur Naik (2002)
– Jakob Lichtenberg, Shuvendu Lahiri, Georg Weissenbacher, Fei Xie (2003)

SLAM Visitors
– Giorgio Delzanno, Andreas Podelski, Stefan Schwoon

Static Driver Verifier: Windows Partners
– Byron Cook, John Henry, Vladimir Levin, Con McGarvey, Bohus Ondrusek,

Abdullah Ustuner
– Neill Clift, Nar Ganapathy, Adrian Oney, Johan Marien, Bob Rinne, Rob Short,

Peter Wieland

Focus on Problems not Solutions

• Device driver problem
– important to Microsoft
– testing insufficient to ensure quality
– many complexities but code of reasonable size

• Problem space guides search for solution
– control-dominated properties ⇒ boolean programs
– no annotations ⇒ counterexample-driven refinement

Exploit Synergies and Shoulders

• Diverse backgrounds of investigators

• SLAM built on strong foundations
– program analysis
– model checking
– automated deduction

• Infrastructure
– MS compiler front-end and alias analysis
– CUDD BDD library
– Simplify theorem prover
– OCaml programming language

Plan Carefully
• Creativity = 10% inspiration + 90% perspiration

• Initial technical report
– laid out plan, left open problems
– recruiting/preparing interns

• Demo milestones

• Software process
– open software architecture
– code ownership, code reviews, code refactoring and

cleanup
– regression test suite

Cultivate Champions
• Device driver experts

– Adrian Oney, Peter Wieland
– explained subtleties of kernel
– reviewed rules and error traces

• Management champions
– Bob Rinne, Base OS
– Amitabh Srivastava, PPRC

Embedded Verification Experts

• Windows committed to hire two Ph.D.s with
verification expertise
– Byron Cook and Vladimir Levin
– offices in both development and research

• Virtual team worked closely together for 1.5
years

• Product team now has 6 people full-time

• High bandwidth channel between groups

Making It “Push Button”
• Without rules, SLAM does nothing

– developing rules is an error-prone process, especially
for legacy APIs

• Environment model costly to build as well
– for drivers, environment is the Windows kernel

• Rule designer needs to know a lot about SLAM
to get efficiency

Conclusions
• The technology now exists for enforcing simple

API contracts

• Rollout/adoption
– first as out-of-band tools (i.e., SLAM/SDV)
– next as in-band tools (part of language/compiler)

• Many variables in equation of technology transfer
– keep your eyes wide open!

Further Reading
See papers, slides from:

http://research.microsoft.com/slam

http://research.microsoft.com/~tball

